Search results

1 – 2 of 2
Article
Publication date: 13 March 2017

Lubomir Krabac, Vladimir Pejaković, Vladislav Drinek, Nicole Dörr and Ewald Badisch

The purpose of this paper is to study the friction and wear behavior of germanium (Ge) thin films deposited by low-pressure chemical vapor deposition method on a chromium…

106

Abstract

Purpose

The purpose of this paper is to study the friction and wear behavior of germanium (Ge) thin films deposited by low-pressure chemical vapor deposition method on a chromium (Cr)-nickel (Ni) stainless steel substrate after being exposed to relatively mild sliding conditions (low loads and sliding distances).

Design/methodology/approach

Wear and friction experiments were conducted with a 100Cr6 steel ball sliding against flat Ge thin-film-coated stainless steel sheets (ball-on-flat microtribometer, no lubricant, normal loads of 50-100 mN, initial Hertzian contact pressures of 385-485 MPa, total sliding distance up to 200 mm and room temperature).

Findings

Scanning electron microscopy results revealed that prepared Ge thin films consisted of two different morphologies: curved nanowires and cone-shaped nano-/microdroplets. Regarding friction and wear characteristics of the investigated samples, the substrates coated with Ge thin films did not affect the coefficient of friction significantly by load. The wear of the base material (Cr-Ni stainless steel) was not observed under the mentioned experimental conditions (see the “Design/methodology/approach” section); however, with increased sliding distance and/or applied load, a rupture of the Ge film and an exposure of the stainless steel substrate to the 100Cr6 ball can be expected. Furthermore, the observations suggest that the smearing of Ge nano- and microstructures, plastically deformed during tribotesting, over the surface exposed to the sliding contact is the dominant tribological process.

Originality/value

For the first time, the tribological interaction between Ge thin film and steel surface was investigated under dry sliding conditions using a ball-on-flat microtribometer, and the obtained results provide a useful base for the further research on tribology of Ge-based thin films.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2016

Mathias Linz, Franz Walzhofer, Stefan Krenn, Andreas Steiger-Thirsfeld, Johannes Bernardi, Horst Winkelmann and Ewald Badisch

The purpose of this paper is to investigate the driving mechanisms for crack propagation regarding the related microstructures. Cracks in white etching layers have been found at…

Abstract

Purpose

The purpose of this paper is to investigate the driving mechanisms for crack propagation regarding the related microstructures. Cracks in white etching layers have been found at the surface of submerged steel blades subjected to frictional sliding conditions.

Design/methodology/approach

In-situ monitoring revealed a fluctuation between mixed lubrication and hydrodynamic lubrication conditions. One lamella including a crack tip was prepared for transmission electron microscopy (TEM) using focused ion beam milling. Transmission electron microscope analysis was performed with the aim to understand the characteristics of the crack propagation, especially considering the influence of the microstructural configuration (grain refinement, carbides, martensite and ferrite grains).

Findings

The investigations have shown a grain-refined plastically deformed layer (friction martensite with grain sizes of < 100 nm) which influences the propagation direction of cracks introduced at the frictionally stressed surface. Thereby, the crack propagation is dominantly parallel to the margin of the grain-refined martensitic layer at the surface and the base material. Cracks were split into side cracks what mostly appears at present carbides. In this case, the crack propagation might strike through the carbide or separate it from the matrix due to the mechanical misfit.

Originality/value

For obtaining the results of this paper, a very special preparation of tribologically stressed samples was performed. Accordingly, specific findings of the crack propagation behavior under such conditions were achieved and are documented in the presented work. Moreover, the described crack propagation process is a combination of several mechanisms which occur in very limited region underneath the surface and are investigated by high-resolution TEM.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2